29 research outputs found

    Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests

    Get PDF
    Natural and anthropogenic disturbances pose a significant threat to forest condition. Continuous, reliable and accurate forest monitoring systems are needed to provide earlywarning of potential declines in forest condition. To address that need, state-of-the-art simulationsmodelswere used to evaluate the utility of C-, L- and P-band synthetic aperture radar (SAR) sensors within an integrated Earth-Observation monitoring system for beech, oak and coniferous forests in Romania. The electromagnetic simulations showed differentiated sensitivity to vegetation water content, leaf area index, and forest disturbance depending on SAR wavelength and forest structure. C-band data was largely influenced by foliage volume and therefore may be useful for monitoring defoliation. Changes in water content modulated the C-band signal by b1 dBwhichmay be insufficient for a meaningful retrieval of drought effects on forest. Cband sensitivity to significant clear-cuts was rather low (1.5 dB). More subtle effects such as selective logging or thinning may not be easily detected using C- or L-band data with the longer P-band needed for retrieving small intensity forest disturbances. Overall, the simulations emphasize that additional effort is needed to overcome current limitations arising from the use of a single frequency, acquisition time and geometry by tapping the advantages of dense time series, and by combining acquisitions from active and passive sensors. The simulation results may be applicable to forests outside of Romania since the forests types used in the study have similar morphological characteristics to forests elsewhere in Europe.Romanian National Agency for Scientific Research and Innovation Authorit

    Economic and Life Cycle Analysis of Passive and Active Monitoring of Ozone for Forest Protection

    Get PDF
    At forest sites, phytotoxic tropospheric ozone (O3) can be monitored with continuously operating, active monitors (AM) or passive, cumulative samplers (PM). For the first time, we present evidence that the sustainability of active monitoring is better than that of passive sensors, as the environmental, economic, and social costs are usually lower in the former than in the latter. By using data collected in the field, environmental, social, and economic costs were analyzed. The study considered monitoring sites at three distances from a control station in Italy (30, 400, and 750 km), two forest types (deciduous and Mediterranean evergreen), and three time windows (5, 10, and 20 years of monitoring). AM resulted in more convenience than PM, even after 5 years, in terms of O3 depletion, global warming, and photochemical O3 creation potential, suggesting that passive monitoring of ozone is not environmentally sustainable, especially for long time periods. AM led to savings ranging from a minimum of EUR 9650 in 5 years up to EUR 94,796 in 20 years in evergreen forests. The resulting social cost of PM was always higher than that of AM. The present evaluation will help in the decision process for the set-up of long-term forest monitoring sites dedicated to the protection of forests from O3

    Conversion from calcineurin inhibitor to belatacept-based maintenance immunosuppression in renal transplant recipients:A randomized phase 3b Trial

    Get PDF
    Significance Statement This randomized trial demonstrates the safety and efficacy of conversion from calcineurin inhibitor (CNI)? to belatacept-based maintenance immunosuppression in renal transplant recipients 6?60 months post-transplant. Patients converted to belatacept showed sustained improvement in renal function associated with an acceptable safety profile consistent with prior experience and a smaller treatment difference in acute rejection postconversion compared with that observed in earlier studies in de novo renal allograft recipients. These results favor the use of belatacept as an alternative to continued long-term CNI-based maintenance immunosuppression, which is particularly relevant for CNI-intolerant patients, including those who experience nephrotoxicity. These data help inform clinical practice guidelines regarding the conversion of such patients to an alternative immunosuppressive drug regimen.Background Calcineurin inhibitors (CNIs) are standard of care after kidney transplantation, but they are associated with nephrotoxicity and reduced long-term graft survival. Belatacept, a selective T cell costimulation blocker, is approved for the prophylaxis of kidney transplant rejection. This phase 3 trial evaluated the efficacy and safety of conversion from CNI-based to belatacept-based maintenance immunosuppression in kidney transplant recipients.Methods Stable adult kidney transplant recipients 6?60 months post-transplantation under CNI-based immunosuppression were randomized (1:1) to switch to belatacept or continue treatment with their established CNI. The primary end point was the percentage of patients surviving with a functioning graft at 24 months.Results Overall, 446 renal transplant recipients were randomized to belatacept conversion (n=223) or CNI continuation (n=223). The 24-month rates of survival with graft function were 98% and 97% in the belatacept and CNI groups, respectively (adjusted difference, 0.8; 95.1% CI, ?2.1 to 3.7). In the belatacept conversion versus CNI continuation groups, 8% versus 4% of patients experienced biopsy-proven acute rejection (BPAR), respectively, and 1% versus 7% developed de novo donor-specific antibodies (dnDSAs), respectively. The 24-month eGFR was higher with belatacept (55.5 versus 48.5 ml/min per 1.73 m(2) with CNI). Both groups had similar rates of serious adverse events, infections, and discontinuations, with no unexpected adverse events. One patient in the belatacept group had post-transplant lymphoproliferative disorder.Conclusions Switching stable renal transplant recipients from CNI-based to belatacept-based immunosuppression was associated with a similar rate of death or graft loss, improved renal function, and a numerically higher BPAR rate but a lower incidence of dnDSA. Clinical Trial registry name and registration number: A Study in Maintenance Kidney Transplant Recipients Following Conversion to Nulojix? (Belatacept)-Based, NCT01820572Nephrolog

    Impact of weather cues and resource dynamics on mast occurrence in the main forest tree species in Europe

    Get PDF
    Mast seeding, the synchronised occurrence of large amounts of fruits and seeds at irregular intervals, is a reproductive strategy in many wind-pollinated species. Although a series of studies have investigated mast year (MY) patterns in European forest tree species at the regional scale, there are few recent evaluations at a European scale on the impact of weather variables (weather cues) and resource dynamics on mast behaviour. Thus the main objective of this study is to investigate the impact of specific weather conditions, as environmental drivers for MYs, on resources in Fagus sylvatica L., Quercus petraea (Matt.)Liebl., Quercus robur L., Picea abies (L.) Karst. and Pinus sylvestris L. at a European level and to explore the robustness of the relationships in smaller regions within Europe. Data on seed production originating from the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) were analysed. Three beta regression models were applied to investigate the impact of seasonal weather variables on MY occurrence, as well as the influence of fruiting intensity levels in the years prior to MYs. Resource dynamics are analysed at three different spatial scales (continent, countries and ecoregions). At a European scale, important weather cues for beech MYs were a cold and wet summer two years before a MY, a dry and warm summer one year before a MY and a warm spring in the MY. For spruce, a cold and dry summer two years prior to a MY and a warm and dry summer in the year before the MY showed the strongest associations with the MY. For oak, high spring temperature in the MY was the most important weather cue. For beech and spruce, and to some extent also for oak species, the best fitting models at European scale were well reflected by those found at smaller scales. For pine, best fitting models were highly diverse concerning weather cues. Fruiting levels were high in all species two years before the MY and also high one year before the MY in the oak species and in pine. In beech, fruiting levels one year before the MY were not important and in spruce, they were inconsistent depending on the region. As a consequence, evidence of resource depletion could only be seen in some regions for spruce.publishedVersio

    Forest Monitoring - Assessment, Analysis and Warning System for Forest Ecosystem Status

    No full text
    Forests provide essential benefits and services as an important component of terrestrial ecosystems. Their functionality and health result from multiple and cumulative interactions of biotic and abiotic stress factors such as air pollution, climate change, changes in land use, and poor management practices. A forest monitoring system was established to identify, analyse and assess the degradation of European forests. Two levels of forest monitoring were developed: I) large-scale forest condition surveys, based on an European grid system starting in 1986 and II) an intensive non-systematic survey network placed in representative forest ecosystems starting in 1994. Romania implemented both level I (1990-1991) and level II (1991-1992) forest monitoring surveys with the results showing the effects of increased air temperatures and a drastic decrease of precipitation since the decade of 1971-1980. Thus, the highest values of damaged trees (crown defoliation >25%) percent were recorded in 1993, 1994, 2000 and 2003 both in the national and European networks. Also, in southern and South-Eastern Romania the forests are more frequently damaged as a response to worsening of climatic factors in this region in recent decades, with temperatures rising 0.7-0.8°C. In general, in Romania, ozone concentrations remained below the critical threshold (40-50 ppb) for affecting growth or health of trees. The levels of S-SO4 and N-NO3 declined in the atmosphere but the accumulation continued to increase in the soil, leading to soil acidification, mainly at depths of 10-40 cm). In general, during the last decade, Romanian forests were affected at low to medium intensities with damage rate up to 11% of the trees and the status of general forest health improved slightly

    Dendroclimatic Response Variability of Quercus species in the Romanian Intensive Forest Monitoring Network

    No full text
    Oaks are among the most important broad-leaved species in Romanian forests from both an economic and socio-ecological point of view. A significant decline of these species has been observed, which was first evident in various studies and investigations followed by the more results of interdisciplinary research performed in intensive monitoring plots (level II) showing that the decline is climate induced. Thus, it is important to understand the climate change conditions and factors that influence Quercus spp. Typical dendroclimatological investigations were conducted on an intensive forest monitoring network based on four oak species (Q. robur, Q. petraea, Q.cerris, and Q. frainetto) in 7 permanent plots placed in southern Romania. Three patterns of climate-growth relationships were identified and discerned in accordance with the Quercus species. All oak species were found to have a positive correlation with the level of precipitation. In addition, the intensity and level of significance of correlation coefficients differ from one species to another and from one region to another.</p

    Single Wall Carbon Nanotubes Based Cryogenic Temperature Sensor Platforms

    No full text
    We present an investigation consisting of single walled carbon nanotubes (SWCNTs) based cryogenic temperature sensors, capable of measuring temperatures in the range of 2–77 K. Carbon nanotubes (CNTs) due to their extremely small size, superior thermal and electrical properties have suggested that it is possible to create devices that will meet necessary requirements for miniaturization and better performance, by comparison to temperature sensors currently available on the market. Starting from SWCNTs, as starting material, a resistive structure was designed. Employing dropcast method, the carbon nanotubes were deposited over pairs of gold electrodes and in between the structure electrodes from a solution. The procedure was followed by an alignment process between the electrodes using a dielectrophoretic method. Two sensor structures were tested in cryogenic field down to 2 K, and the resistance was measured using a standard four-point method. The measurement results suggest that, at temperatures below 20 K, the temperature coefficient of resistance average for sensor 1 is 1.473%/K and for sensor 2 is 0.365%/K. From the experimental data, it can be concluded that the dependence of electrical resistance versus temperature can be approximated by an exponential equation and, correspondingly, a set of coefficients are calculated. It is further concluded that the proposed approach described here offers several advantages, which can be employed in the fabrication of a microsensors for cryogenic applications

    Structural and optical characterization of porous anodic aluminium oxide

    Get PDF
    Spectroscopic ellipsometry and scanning electron microscopy (SEM) experiments are employed to characterize porous aluminum oxide obtained by anodization of thin aluminum films. Rutherford backscattering spectra and x-ray diffraction experiments provide information on the composition and the structure of the samples. Results on our thin film samples with a well-defined geometry show that anodization of aluminum is reproducible and results in a porous aluminum oxide network with randomly distributed, but perfectly aligned cylindrical pores perpendicular to the substrate. The ellipsometry spectra are analyzed using an anisotropic optical model, partly based on the original work by Bruggeman. The model adequately describes the optical response of the anodized film in terms of three physically relevant parameters: the film thickness, the cylinder fraction, and the nanoporosity of the aluminum oxide matrix. Values of the first two quantities, obtained from fitting the spectra, are in perfect agreement with SEM results, when the nanoporosity of the aluminum oxide matrix is taken into account. The validity of our optical model was verified over a large range of cylinder fractions, by widening of the pores through chemical etching in phosphoric acid. While the cylinder fraction increases significantly with etch time and etchant concentration, the nanoporosity remains almost unchanged. Additionally, based on a simple model considering a linear etch rate, the concentration dependence of the etch rate was determined

    Ozone exposure affects tree defoliation in a continental climate

    No full text
    Ground-level ozone (O-3) affects trees through visible leaf injury, accelerating leaf senescence, declining foliar chlorophyll content, photosynthetic activity, growth, carbon sequestration, predisposing to pests attack and a variety of other physiological effects. Tree crown defoliation is one of the most important parameters that is representative of forest health and vitality. Effects of air pollution on forests have been investigated through manipulative experiments that are not representative of the real environmental conditions observed in the field. In this work we investigated the role of O-3 concentration and other metrics (AOT40 and POD0) in affecting crown defoliation in temperate Romanian forests. The impacts of O-3 were estimated in combination with nitrogen pollutants, climatic factors and orographic conditions, by applying a non-linear modelling approach (Random Forest and Generalised Regression Models). Ozone concentration and AOT40 under Romanian conditions were more important than meteorological parameters in affecting crown defoliation. In these particular conditions, POD0 never exceeded the critical level suggested by previous literature for forest protection, and thus was not important in affecting crown defoliation

    Study of Edge and Screw Dislocation Density in GaN/Al2O3 Heterostructure

    No full text
    This study assesses the characteristics (edge and screw dislocation density) of a commercially available GaN/AlN/Al2O3 wafer. The heterostructure was evaluated by means of high-resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HR-TEM), and Doppler-Broadening Spectroscopy (DBS). The results were mathematically modeled to extract defect densities and defect correlation lengths in the GaN film. The structure of the GaN film, AlN buffer, Al2O3 substrate and their growth relationships were determined through HR-TEM. DBS studies were used to determine the effective positron diffusion length of the GaN film. Within the epitaxial layers, defined by a [GaN P 63 m c (0 0 0 2) || P 63 m c AlN (0 0 0 2) || (0 0 0 2) R 3 &macr; c Al2O3] relationship, regarding the GaN film, a strong correlation between defect densities, defect correlation lengths, and positron diffusion length was assessed. The defect densities &rho; d e = 6.13 &times; 1010 cm&minus;2, &rho; d s = 1.36 &times; 1010 cm&minus;2, along with the defect correlation lengths Le = 155 nm and Ls = 229 nm found in the 289 nm layer of GaN, account for the effective positron diffusion length Leff~60 nm
    corecore